

Oyster River Protocol For Transcriptome Assembly

The Oyster River Protocol for (eukaryotic) transcriptome assembly is an actively developed, evidenced based method for optimizing transcriptome assembly. The manuscript corresponding to this protocol is here: https://peerj.com/articles/5428/
In brief, the protocol assembles the transcriptome using a multi-kmer multi-assembler approach, then merges those assemblies into 1 final assembly.

Contact Information

	Gitter (preferred) [image: ImageLink] [https://gitter.im/macmanes-lab/Oyster_River_Protocol]

	Email (good): Matthew.MacManes@unh.edu

	Twitter (good): @MacManes [http://twitter.com/macmanes]

	Phone (discouraged): 603-862-4052

	Office (I’m hiding under my desk): 434 Gregg Hall

Some method you’d like me to benchmark? File an issue [https://github.com/macmanes-lab/Oyster_River_Protocol/issues]

1. Installing the software

Docker is the preferred installation method!!!!

How to install the ORP using Docker

If you cannot use docker, then look at these instructions for installing manually, on Linux operating systems.

How to install the ORP

2. List of dependencies

Sorry there are so many. Assembly is complex.. The makefile should take care of this.

	Rcorrector, Trimmomatic, Trinity, SPAdes, TransABySS, MCL, Metis, OrthoFuser, BLAST, seqtk, BUSCO (make sure to install databases), TransRate (the ORP version packaged here).

	Python modules numpy, scipy, biopython, cvxopt.

3. oyster.mk Usage

After activating the orp conda environment. this command will run the entire ORP in one shot! You can add the `--dry-run` flag to the end to see the individual commands that it will run, if you are curious. The STRAND=RF allows for strand specific assembly in version 2.1.0 of the ORP.

You must use the full PATH to the oyster.mk script for it to work

source activate orp

/path/to/Oyster_River_Protocol/oyster.mk \
TPM_FILT=1 \
STRAND=RF \
MEM=150 \
CPU=24 \
READ1=SRR2016923_1.fastq \
READ2=SRR2016923_2.fastq \
RUNOUT=SRR2016923

4. strandeval.mk Usage

After activating the orp_v2 conda environment. this command will run
the evaluate the strandedeness of your assembly in ORP version 2.1.0. It should help you
understand if you have assembled the reads using the proper flags.
You can add the `--dry-run` flag to the end to see the individual commands
that it will run, if you are curious. The evaluation script was modified from a similar
script in the Trinity distribution (https://github.com/trinityrnaseq/trinityrnaseq/wiki/Examine-Strand-Specificity).

See Oyster River Strand Exam Tool for some help in interpreting the results.

You must use the full PATH to the strandeval.mk script for it to work

source activate orp

/path/to/Oyster_River_Protocol/strandeval.mk main \
ASSEMBLY=assembly.fasta \
CPU=24 \
READ1=SRR2016923_1.fastq \
READ2=SRR2016923_2.fastq \
RUNOUT=SRR2016923

5. report.mk Usage

After activating the orp conda environment. this command will generate a
transcriptome assembly report, in ORP version 2.1.0.
You can add the `--dry-run` flag to the end to see the individual commands
that it will run, if you are curious. It can be run on an assembly generated by
any method.

** The LINEAGE= flag must be specified, and the database you specify must
be in /path/to/Oyster_River_Protocol/busco_dbs. The Eukaryotic database
is there by default.

source activate orp

/path/to/Oyster_River_Protocol/report.mk main \
ASSEMBLY=assembly.fasta \
CPU=24 \
LINEAGE=eukaryota_odb9
READ1=SRR2016923_1.fastq \
READ2=SRR2016923_2.fastq \
RUNOUT=SRR2016923

6. Changelog

Version 2.2.2

	FIXED a critical bug whereby the incorrect transcript was picked from a given orthogroup. This fix will potentially improve BUSCO scores dramatically.

	ADDED the ability to install using Docker!!!

	ADDED a flag to filter lowly expressed transcripts out of the dataset. Implement via TPM_FILT=<float>. The unfiltered assembly is available in the assemblies/working/ folder. We also implement some methods to try and make sure that we don’t eliminate any “real” transcripts in this process of TPM filtering.

	ADDED a check to make sure that your read files exist at the specified location.

	FIXED a bug the prevented proper BUSCO checkpointing (thanks @AdamStuckert).

	UPDATED Salmon to 0.13.1 and added the –validateMappings flag to the Salmon commands.

	UPDATED code such that you no longer need to specify main when running oyster.mk.

Version 2.1.1

	Updated conda environment name to orp rather than orp_v2

	Users may now specify kmer length to be used for Trinity using flag TRINITY_KMER=INT and for SPAdes using flags SPADES1_KMER=INT for the 1st SPAdes run and SPADES2_KMER=INT for the 2nd SPAdes run. Note the max kmer for trinity is 32, and for SPAdes it is 96. For all assemblies, the kmer length must be read_length-1 at a maximum.

	Add a check to make sure reads are of sufficient length given your selected assembly kmer length

Version 2.1.0

	Strand specific libraries are now assembled properly, this is enabled by adding the STRAND= flag. Both RF and FR are options, tho RF is the most common option.

	There is a new tool, strandeval.mk, which helps you evaluate the strandedness of your assembly.

	There is a new tool, report.mk, which generates an assembly report for you.

	There is a new tool, quant.mk, which facilities the quantitation procedure.

	Typing oyster.mk help, report.mk help, strandeval.mk help will print a help message.

Version 2.0

	The final assembly is now called $RUNOUT.ORP.fasta.

	Shannon has been removed, and TransABySS has been added in it’s place. MANY users (and myself) have struggled with the RAM use and runtime of Shannon. TransABySS is much faster, and uses much less RAM.

	Diamond is leveraged for transcript recovery. It had been noted by some users that a few “real” transcripts were getting lost during the OrthoFuser steps.. Diamond, which is run after, recovers those.

	The use of LinuxBrew has been removed, in favor of conda. Dependencies are now managed by conda. You will need to launch the orp_v2 conda environment before assembling.

	cd-hit-est is now run as default.

Index

Oyster River Protocol

[image: _images/Oyster_River_Protocol.svg]Join the chat at https://gitter.im/macmanes-lab/Oyster_River_Protocol [https://gitter.im/macmanes-lab/Oyster_River_Protocol?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Official Repository of the Oyster River Protocol for Transcriptome Assembly

How to install the ORP

If you are hoping to attempt a Trinity assembly, requirements for RAM = .5 * X million read pairs. For instance, to assemble 40 million paired-end reads using Trinity, you’ll need a minimum of 20Gb of RAM.

These instructions work with a standard Ubuntu 16.04 or 18.04 machine available on AWS. Similar instructions should work for people on their own workstations, especially if you have sudo privileges, or even if you don’t.

Update Software and install things from apt-get

This is typically necessary only when starting from a fresh machine.

sudo apt-get update && sudo apt-get -y upgrade && sudo apt-get -y install build-essential git libxml2-dev libz-dev sudo nano wget curl

Install the ORP.

Packages are installed mostly via conda - at the end of the make process, you will have an orp conda environment, that will contain everything you need for assembly. Make sure to type source ~/.profile and the end of the make process/

git clone https://github.com/macmanes-lab/Oyster_River_Protocol.git
cd Oyster_River_Protocol
make
source ~/.profile

Make sure to add the items to your profile file, as needed.
Make sure to ```source``` the profile file after, to make sure everything is loaded.

Edit config.ini.

You should just have to change the user path info (the stuff before /Oyster_River_Protocol/...). A simple way to do this is via sed.

sed -i "s_ubuntu_$(whoami)_g" $HOME/Oyster_River_Protocol/software/config.ini

You may want to install additional BUSCO databases - the Euk. database is installed and used by default.

###Download databases

cd $HOME/Oyster_River_Protocol/busco_dbs

Eukaryota
wget http://busco.ezlab.org/v2/datasets/fungi_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/metazoa_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/nematoda_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/arthropoda_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/insecta_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/vertebrata_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/tetrapoda_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/aves_odb9.tar.gz
wget http://busco.ezlab.org/v2/datasets/mammalia_odb9.tar.gz

tar -zxf ..
cd

Test the Installation

This is a very small data set that should assemble ~30 transcripts. It will finished in a few minutes or less using desktop-sized computer. The BUSCO numbers you get at the end are bad, for obvious reasons. If this finishes without error, you’re good to move on to a ‘real’ assembly!! Good luck, and ping me on Gitter if issues!

You must activate the orp conda environment, that make made for you.

You must use the full PATH to the oyster.mk script for it to work

cd $HOME/Oyster_River_Protocol/sampledata

source activate orp

#note use of full PATH (your PATH to oyster.mk might be different)

$HOME/Oyster_River_Protocol/oyster.mk \
STRAND=RF \
TPM_FILT=0.2 \
MEM=15 \
CPU=8 \
READ1=test.1.fq.gz \
READ2=test.2.fq.gz \
RUNOUT=test

At the end of the successful run, you should see some text that looks like this. Your numbers will be different, but should similar. Assembly is not deterministic.

14| #
13| #
12| #
11| #
10| #
 9| #
 8| #
 7| ##
 6| ##
 5| ##
 4| ##
 3| ##
 2| ##
 1| ## #

Summary
observations: 20
min value: -1.000000
mean : -0.987400
max value: -0.935000

***** See the following link for interpretation *****
***** https://oyster-river-protocol.readthedocs.io/en/latest/strandexamine.html *****

***** QUALITY REPORT FOR: test using the ORP version 2.2.0 ****
***** THE ASSEMBLY CAN BE FOUND HERE: /root/ORP/sampledata/assemblies/test.ORP.fasta ****

***** BUSCO SCORE ~~~~~> C:0.0%[S:0.0%,D:0.0%],F:0.3%,M:99.7%,n:303
***** TRANSRATE SCORE ~~~~~> 0.37518
***** TRANSRATE OPTIMAL SCORE ~~~~~> 0.56393
***** UNIQUE GENES ORP ~~~~~> 39
***** UNIQUE GENES TRINITY ~~~~~> 31
***** UNIQUE GENES SPADES55 ~~~~~> 22
***** UNIQUE GENES SPADES75 ~~~~~> 23
***** UNIQUE GENES TRANSABYSS ~~~~~> 35

BFC and read pairing info

There is what I consider a bug in bfc, read pairing information is stripped when using bfc to correct fastQ reads in the Illumina 1.8 format or newer. This has been described here: https://github.com/lh3/bfc/issues/8 and https://github.com/macmanes-lab/Oyster_River_Protocol/issues/2.

The bug requires, assuming you want to interleave and de-interleave reads, which I think most people will want to do, that you place the /1 and /2 tags in the fastQ headers. To do this, follow the below steps.

sed 's_ _/1 _g' file.1.fq > edited_file.1.fq

and to for the /2 read file

sed 's_ _/2 _g' file.2.fq > edited_file.2.fq

Then supply the edited files to seqtk for merging, bfc for correction, and so on…

How to install the ORP using Docker

	Pull the image from DockerHub

docker pull macmaneslab/orp:2.3.3

\2. Alternatively, but probably not preferred, to build the image from scratch.

docker build -t orp:2.3.3 -f $HOME/Oyster_River_Protocol/Dockerfile/Dockerfile .

\3. Run the Image

docker run -it macmaneslab/orp:2.3.3 bash

#or with adding a drive, changing `/home/ubuntu/` to your mountpoint

docker run -it \
 --mount type=bind,source=/home/ubuntu/,target=/home/orp/docker \
macmaneslab/orp:2.3.3 bash

\4. Test the Installation

cd $HOME/Oyster_River_Protocol/sampledata

conda activate orp

$HOME/Oyster_River_Protocol/oyster.mk \
STRAND=RF \
TPM_FILT=1 \
MEM=5 \
CPU=4 \
READ1=test.1.fq.gz \
READ2=test.2.fq.gz \
RUNOUT=test

Step by step instructions

	Archive Reads.

It is likely a good idea to compress your raw reads and save them elsewhere - like another computer. Computers fail, drives corrupt. Better to NOT lose your data in the process.

	Initial Quality Check

::

SolexaQA++ analysis file_1.fastq file_2.fastq

Plot Results using R

::

R #this opens R on your AWS machine

qual1 <- read.delim(”file_1.fastq.quality”)
qual2 <- read.delim(”file_2.fastq.quality”)
jpeg(’qualplot.jpg’)
par(mfrow=c(2,1))
boxplot(t(qual1), col=’light blue’, ylim=c(0,.4), frame.plot=F, outline=F, xaxt = “n”, ylab=’Probability of nucleotide error’, xlab=’Nucleotide Position’, main=’Read1’)
axis(1, at=c(0,10,20,30,40,50,60,70,80,90,100), labels=c(0,10,20,30,40,50,60,70,80,90,100))
boxplot(t(qual2), col=’light blue’, ylim=c(0,.4), frame.plot=F, outline=F, xaxt = “n”, ylab=’Probability of nucleotide error’, xlab=’Nucleotide Position’, main=’Read2’)
axis(1, at=c(0,10,20,30,40,50,60,70,80,90,100), labels=c(0,10,20,30,40,50,60,70,80,90,100))
dev.off()
quit()
n

	Error Correct

Use RCorrector if you have more than 20 million paired-end reads.
NOTE: I’ve basically taken to using RCorrector for everything, given the peculiarities with running BFC.

::

run_rcorrector.pl -k 31 -t 30 -1 file_1.fastq -2 file_2.fastq

Use bfc if you have less than 20 million paired-end reads. If you are using Illumina fastQ format 1.8 or later, :doc:read this <bfc_pairing> before attempting BFC correction

::

seqtk mergepe file_1.fastq file_2.fastq > inter.fq
bfc -s 50m -k31 -t 16 inter.fq > bfc.corr.fq
split-paired-reads.py bfc.corr.fq
mv bfc.corr.fq.1 bfc.corr.1.fq
mv bfc.corr.fq.2 bfc.corr.2.fq

	Aggressive adapter & gentle quality trimming.

One should aggressively hunt down adapter sequences and get rid of them. In contrast, gently trim low quality nucleotides. Any more will cause a significant decrease on assembly completeness, as per http://journal.frontiersin.org/article/10.3389/fgene.2014.00013/. I typically do both these steps from within Trinity (using Trimmomatic), but one could do trimming as an independent process if desired.
NOTE: Trimmomatic is a little (or maybe a lot) faster, so in general I use
::

trimmomatic PE -threads 24 -baseout reads.TRIM.fastq reads/SRR1522987_1.fastq reads/SRR1522987_2.fastq LEADING:3 TRAILING:3 ILLUMINACLIP:barcodes.fa:2:30:10 MINLEN:25

	Assemble

Assemble your reads using as many different assemblers as possible. I typically use Trinity, SPAdes and Shannon. I’d love to use BinPacker, but I can’t usually get it to install or work. If you have stranded data, make sure to iclude the --SS_lib_type RF tag, assuming that is the right orientation (If you’re using the standard TruSeq kit, it probably is). Also, you may need to adjust the --CPU and --max_memory settings. Change the name of the input reads to match your read names.

::

Trinity –seqType fq –max_memory 100G –CPU 16 –output Rcorr_trinity –full_cleanup –left skewer-trimmed-pair1.fastq –right skewer-trimmed-pair2.fastq –no_normalize_reads

I assemble using SPAdes with two different kmer values. k=55 and k=75.

::

rnaspades.py –only-assembler -o spades_k75 –threads 24 –memory 120 -k 75 -1 skewer-trimmed-pair1.fastq -2 skewer-trimmed-pair2.fastq

rnaspades.py –only-assembler -o spades_k55 –threads 24 –memory 120 -k 55 -1 skewer-trimmed-pair1.fastq -2 skewer-trimmed-pair2.fastq

Shannon assembly. To avoid running the Shanon error correction software (Quorum), I convert the fq reads to fa using seqtk. I wish there were a flag for this, but alas, there is none.

::

python shannon.py -p 24 -K 75 -o shannonassemb –left skewer-trimmed-pair1.fa –right skewer-trimmed-pair2.fa

	OrthoFuse Merge Assemblies

Each Assembler will reconstruct a slightly different set of true transcript. OrthoFuse will take them both and merge them together. Orthofuse is new software I’ve recently written, and should be considered in alpha. It works, and we’ve found that it does as good a job or better than TransFuse (which we find unreliable in it’s installation in running).

::

orthofuser.mk all FASTADIR=assemblies/ READ1=skewer-trimmed-pair1.fastq READ2=skewer-trimmed-pair2.fastq RUNOUT=mergedassembly CPU=24 LINEAGE=busco_dbs/eukaryota_odb9

	Quality Check

If you have followed the ORP AWS setup protocol, you will have the BUSCO Metazoa and Vertebrata datasets. If you need something else, you can download from here: http://busco.ezlab.org/. You should check your assembly using BUSCO. For most transcriptomes, something like 60-90% complete BUSCOs should be accepted. This might be less (even though your transcriptome is complete) if you are assembling a marine invert or some other ‘weird’ organism.

::

python3 run_BUSCO.py -i mergedassembly.orthomerged.fasta -m transcriptome –cpu 24 -l eukaryota_odb9 -o orthofused

You should evaluate your assembly with Transrate, in addition to BUSCO. A Transrate score > .22 is generally thought to be acceptable, though higher scores are usually achievable. There is a good*fasta assembly in the output directory which you may want to use as the final assembly, for further filtering [e.g., TPM], or for something else.

::

transrate -o assemb_name -t 16 -a mergedassembly.orthomerged.fasta –left skewer-trimmed-pair1.fastq –right skewer-trimmed-pair2.fastq

	Filter

Filtering is the process through which you aim to maximize the Transrate score, which assays structural integrity, while preserving the BUSCO score, which assays genic completeness. At some level this is a trade off. Some people may require a structually accurate assembly and not care so much abot completeness. Others, dare I say most, are interested in completeness - reconstructing everything possible - and care less about structure.

In general, for low coverage datasets (less than 20 million reads), filtering based on expression, using TMP=1 as a threshold performs well, with Transrate filtering often being too aggressive. With higher coverage data (more than 60 million reads) Transrate filtering may be worthwhile, as may expression filtering using a threshold of TMP=0.5. Again, these are general recommendations, you’re dataset may perform differently.

To do the filtering, run BUSCO on the good*fasta file which is a product of Transrate. This assembly may be very good (or maybe not). I typically use this one if the number of BUSCOs does not decrease by more than a few percent, relative to the raw assembly output from Trinity. Use the BUSCO code from above, changing the name of the input and output. In addition to Transrate filtering (of as an alternative), it is often good to filter by gene expression. I typically filter out contigs whose expression is less than TMP=1 or TMP=0.5.

Estimate expression with Kallisto

::

kallisto index -i kallisto.idx transfuse.fasta
kallisto quant -t 32 -i kallisto.idx -o kallisto_orig skewer-trimmed-pair1.fastq skewer-trimmed-pair2.fastq

Estimate expression with Salmon

::

salmon index -t transfuse.fasta -i salmon.idx –type quasi -k 31
salmon quant -p 32 -i salmon.idx –seqBias –gcBias -l a -1 skewer-trimmed-pair1.fastq -2 skewer-trimmed-pair2.fastq -o salmon_orig

Pull down transcripts whose TPM > 1.

::

awk ‘1>$5{next}1’ kallisto_orig/abundance.tsv | awk ‘{print $1}’ > kallist
awk ‘1>$4{next}1’ salmon_orig/quant.sf | sed ‘1,10d’ | awk ‘{print $1}’ > salist
cat kallist salist | sort -u > uniq_list

python ~/share/filter.py transfuse.fasta uniq_list > Highexp.fasta

	Annotate

I have taken a liking to using dammit! (http://dammit.readthedocs.org/en/latest/).

::

mkdir ~/dammit/ && cd ~/dammit
dammit databases –install –database-dir ~/dammit –full –busco-group metazoa
dammit annotate Highexp.fasta –busco-group metazoa –n_threads 36 –database-dir ~/dammit/ –full

	Report

Verify the quality of your assembly using content based metrics. Report Transrate score, BUSCO statistics, number of unique transcripts, etc. Do not report meaningless statistics such as N50

Oyster River Strand Exam Tool

The Oyster River Strand Exam Tool, which is adapted from the Trinity Strand Examination script (https://github.com/trinityrnaseq/trinityrnaseq/wiki/Examine-Strand-Specificity) can be used as per the following:

/path/to/Oyster_River_Protocol/strandeval.mk main \
ASSEMBLY=test.fasta \
READ1=1.subsamp_1.cor.fq \
READ2=1.subsamp_2.cor.fq \
RUNOUT=test

This script maps a random 1M reads to the assembly, then plots (plus_strand - minus_strand) / total, which helps us understand the strandedness of the assembly, and if we assembled correctly. Here are the 3 major types of plots you could receive back.

Assembled Correctly

This plot, showing a somewhat normal distribution, is an example of a non-strand-specific library, assembled properly

[image: _images/notss.png]

This plot, showing an extremely biased (can be either left or right side) unimodal distribution, is an example of a strand-specific library, assembled properly. It should be noted that as a result of imperfect library generation (wet-lab issue), there may be a second, smaller peak on the opposite side of the histogram. Basically, the quality of stand-specific libraries varies, and this may introduce noise in this analysis.

[image: _images/ss.png]

Assembled Improperly

This plot, showing an extremely biased bimodal distribution, is an example of a strand-specific library, assembled in a non-strand specific fashion.

[image: _images/ss_mis.png]

 _static/ajax-loader.gif

_images/ss.png
18771]
17784
1677
15510
14823
13836
12849
11as2]
10875
sges|
aso1]|
14|
ss27|
st
4953
3968
2573
1952]
1o8s| ##

T r——

_images/ss_mis.png
96sa|
a7z
a663)
8155
2
138
s62s)
o121
ssiz|
5104
455
4267
3578
a7
2561
2053
1544]
1036
s27]
19]

*
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
* *
*
IS

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/notss.png
1882 *
1707] *
1613] *
1518] *
1324] -
1323] -
1235] -
1148] -
1ogs] e
s e
g e
2| e
s e
s3] eeeer
wro| seerer
P E——
Pt R
los| eeesserr

1on| eeesrreer
ppT——

_static/file.png

nav.xhtml

 Table of Contents

 		
 Oyster River Protocol For Transcriptome Assembly

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

